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A Partial Variational Approach for Arbitrary
Discontinuities in Planar Dielectric

Waveguides

SHYH-JONG CHUNG AND CHUN HSIUNG CHEN

Mstrucf —A novel approachfor analyzing arbitrary discondnuhies k
planar dielectric wavegrddesis proposedthat usesthe finhe-element method
along with the frontal solution technique. Basedon the partial variational
principle (PVP), the fields intenor and exterior to the dkcontinuity fiuite
element region can be treated independently and eventually can be cou-

pled. we iuterior fields are expanded by the finite element nodal values

and the correspmrding local bases, while the exterior ones are handled by

an approach combining modal expansion aud Green’s function. In numeri-

cal computation, the continuous spectra of the waveguide modes are

discretized by the Lagnerre expansion method.

To check the correctness of the present analysis, two numerical results

are compared with those of other methods. The scattering characteristics

of several tinearly tapered discontinuitfes, such as transformers and feed

structures, are anatyzed and compared with those having step junctions.

L lNTttODUcTION

1?

LANAR dielectric waveguides are important in mil-

limeter-wave, submillimeter-wave, and optical systems.

Discontinuities are often introduced to create such compo-

nents as transformers, grating couplers, and feed struc-

tures. They also occur as a consequence of the misalign-

ment in component interconnections. Thus, many authors

have paid attention to the discontinuity problems associ-

ated with planar dielectric waveguides [1]–[17].

Analysis of associated discontinuity problems is difficult

owing to the excitation of guided modes and radiation

modes which have a continuous spectrum. Several tech-

niques have been proposed to deal with the continuous

spectrum in actual numerical computation [3]–[13].

Mabmoud and Beal [5] used the normalized Laguerre

polynomials to expand the continuous spectrum, and then

applied the mode-matching method to solve a step discon-

tinuity problem. Rozzi [6] instead applied the same poly-

nomials to express the tangential fields at the junction of a

step discontinuity and proposed the Ritz-Galerkin varia-

tional approach for solution.
These methods are effective only if the discontinuities

are of the abrupt step type. But the analysis of arbitrary

discontinuities is also necessary from practical consid-

erations. For small, smoothly varying discontinuities,
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Marcuse [14] solved a tapered dielectric slab waveguide by

regarding the structure as a succession of an infinite num-

ber of infinitesimal steps. Miyanaga and Asakura [15] used

the perturbation theory to study a linearly tapered grating

coupler.

For arbitrarily varying discontinuities, the finite element

approach has been adopted to expand the field distribu-

tion in the discontinuity region [16], [17]. In this approach,

treatment of the fields exterior to the finite element (dis-

continuity) region poses a considerable challenge. Suzuki

and Koshiba [16] put a semi-infinite electric conductor far

above the discontinuities and used the Green’s functions of

the waveguides to obtain a representation of the boundary

fields. Recently, Chung and Chen [17] treated the problem

of arbitrary irregularities in an otherwise uniform slab

waveguide by using the Green’s function of the waveguide

to express the exterior fields in terms of the fields in the

irregularity region. However, this approach seems useless

when the two slab guides connected to the discontinuity

are different, because of the difficulty in finding the Green’s

function.

In this investigation, the problem with completely arbi-

trary discontinuities in different dielectric slab waveguides

will be attacked. The fields interior and exterior to the

discontinuity finite element region will be properly han-

dled and coupled based on the partial variational principle

(PVP) [18] and the finite element method. Several linearly

tapered discontinuities will then be investigated in detail

with numerical results to show the scattering characteris-

tics of the structures.

II. FORMULATION OF THE PROBLEM

Consider the planar dielectric waveguide structure with
discontinuity shown in Fig. l(a), which is uniform in the y

direction and symmetric with respect to the y -z plane.

Suppose that symmetric guided TE modes with y-polarized

electric fields are incident from z = – m and z = + eo.

Basically, we may consider the reduced structure shown in

Fig. l(b), where a discontinuity region Q with refractive

index n (x, z ) is enclosed by three artificial boundaries

rl, I’z, r~, and a magnetic wall rO, which is introduced due

to symmetry. Placed in region I (0< x < cc, z < O) and

region H (O < x < co, z > 1) are planar dielectric wave-

0018 -9480/89/0100-0208$01 .00 01989 IEEE



CHUNG AND CHEN: PARTIAL VARIATIONAL APPROACH

x
E;—— ~

1
1
1

~rnagnetic wa II r.
(b)

Fig. 1. (a) Original structure with arbitrary discontinuity in planar
dielectric wavegnide. (b) Reduced structure for solution.

guides I and II, respectively, whose refractive indices are

rrl and n ~. Region III is free space, which is above the

artificial boundary x = XO. Note the overlapping of regions

I and 111 as well as II and 111.

From the partial variational principle, a variational

equation is obtained [18], [17]:

~ara=fj

H dE; (?EY dE; i_lEy
Ia=~ dv — —+—— – k&2E”E

~Po Q ax ax az az
YY

1

J+ ~dsfi. [m:(r+)–m:(r’)]

.py(r-)-Ey(r+)]

where I’ = rl + r2 + r~ and i? is its outward normal. r –

and r+ represent the inner and outer sides of r, respec-

tively. As usual, k; = U2pOC0 and n2(x, z) = 6(x, z)/co,

where c( x, z) is the permittivit y of the discontinuity region

G?. (Ey, HX, HZ) are the undetermined trial fields, while

(E;, H;, H;) are test fields, which may be regarded as a

set of weighting functions.

In applying (l), two points must be mentioned. The

partial variational operator 8“ must operate only on the

test fields with superscript a. The trial fields exterior to

boundary r must obey the source-free and radiation con-

ditions.
The fields in (1)’may be classified into two groups: those

interior and those exterior to the boundary r. Since the

variational equation (1) actually contains the natural conti-

nuity boundary condition [18], these two groups of fields

can first be treated independently and then be coupled in

..

(a)

1
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(b)

Fig. 2. (a) Typical mesh division for linearly tapered discontinuity in

planar dielectric waveguide ( AIY X M: = 6 X 9). (b) Second-order trian-

gular element.

the process of solving the variational equation (l). The

interior fields are tackled by the finite element method,

which will be described in the next section. The exterior

fields are further divided into two linked types: those in

the waveguides and those in free space, which will be

depicted in Sections IV and V.

III. FIELDS IN THE DISCONTINUITY REGION

The fields in the discontinuity region $2 are handled by

the finite element method [19], [20]. To this end, the

discontinuity region is divided into several elements, each

with triangular shape, as shown in Fig. 2(a). For each

element e, six nodes are specified (Fig. 2(b)) and the field

E; in that element is expanded by the nodal values $: and

their corresponding shape functions N,:

E;(x, z) = ; @:Nz (2)
i=]

where

IVl = 1,(21, -1) N,= 12(212 –1)

N3 = 13(213 –1) x,= 4111~ (3)

and 11,lJ, 13 are the area coordinates [19]. The relation

between the area coordinates and the Cartesian coordi-

nates is given by

1]=[ : WI ‘4)
where (xJ, Zj) are the Cartesian coordinates of ‘the vertex j

(~= 1,2, 3) of the triangle.
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The fields in the whole discontinuity region are just the which may satisfy the above requirement.) Besides, the

sum of those in each element: sequence of (8) should be independent in O < x < X. and

should be able to represent the field behavior in O < x < Xo.

E,(Q) =x ; @:h( (Sa) TO be independent, So maybe chosen as small as possible.

e 1=1 But when So is too small, the Laguerre polynomials will

vary quickly near x = O and will be almost zero about

;Ey@) = ~ ,:1 O;:M, t=x, z. (5b)
x = Xo, which makes it difficult for the sequence of (8) to

express the actual field behavior in the vicinity of x = Xo.

In terms of these normalized Laguerre polynomials, the

IV. FIELDS IN WAVEGUIDE REGIONS
modal functions of the waveguides can be expressed as

The fields in waveguides I and II are expressed as the

combination of the waveguide modes:
u;(x) = 5 Qj~~q(x) (9a)

~=1

u:(x) = f Pp:lz?q(x) (9b)
~=1

+ J“dpd;~ &(x)e*Jqw%) (6a) where
o P

Q;q=~mdxu;(x)cYq(x) (lOa)
W.@&(x> z)

where a = I or H. When a = 1, the upper signs are used;

otherwise the lower ones are used. AP and aP are the

coefficients of the incident (known) and scattered (un-

known) pth guided modes, whose modal function and

propagation constant are UP(X) and & The quantities

UP(x) and dP are the modal function and the coefficient of

the radiation mode, with p and fiP = ~~ being the

wavenumbers (continuous spectrum) in the x and z direc-

tions, respectively. N. is the total number of guided modes

in region a; and z. = O or 1, when a = I or II, respectively.

The scattering coefficients can be represented as a func-

tion of the magnetic fields at z = z.. Multiplying (6b) in

turn by u; and [~, integrating over x at z = z., and using

mode orthogonahty property, one obtains

and M is a finite number in actual numerical computa-

tion.

Now let us expand the magnetic fields upoHX as a sum

of the incident fields and the combination of the normal-

ized Laguerre polynomials:

N. M

where the h ~’s are to be determined.

With (11), (9a), and (9b), the scattering coefficients of

(7a) and (7b) maybe rewritten as

(12a)

Substituting (12a), (12b), (9a), and (9b) into (6a), one gets

d;=+ _ ;~mdxu;(x)wpoH;(x, z.). (7b) ~y(ra+ ) = E;(x, ~a)

Introduce a complete set in 0< x < cm [6]:

= 5A~u~(x)+:lh’[:lz’%(x)l ’13)

~ ()

x
s?q(x)=—

~=1
exp(– x/2 So) Lq–1 ~ , q=l, z,...

o where

(8)
‘“ 1

J

PP;PP;

where L denotes the Laguerre polynomial. Deciding on -Z;, = ~ — QJqQj, + “ dp — (14)
p=l /’; o P. “

the scale factor So is quite complicated. Roughly speaking,

it is chosen such that (9a) can essentially be satisfied for a Equations (11) and (13) then give the tangential fields over

given M [6]. (Actually, there exists a large range of SO the boundaries rl and rz.



CHUNG AND CHEN: PARTIAL VARIATIONAL APPROACH 211

V. FIELDS IN FREE SPACE

The fields above the boundary x = XO may be repre-

sented by those over the boundary, using the Green’s

function in free space (see the Appendix):

a

Ey(x, z) = –~m dz’G(x– Xo, z–Z’)~~y(&Z’),
—m

(x, z) =111 (15a)

~l-%~z(-x, z)

=— Jmdz’G(x –Xo, Z– Z’);cdpoffz(xo, Z’)
—m

d2
——.– jjmdz’G(x– Xo, z – z’)-j-@xo, Z’),

–05

(X, Z) G III (15b)

where the Green’s function G takes the form

~ @(ko@x’)’+(z-z’)2).G(x–x’, z–z’)=– iHo

(16)

The integrations in (15a) and (15b) can be divided into

three parts, that is, –m<z’<O, l<z’<co, and O GZ’<1.

The fields in first two parts are calculated by partially

differentiating (6a) with respect to x, and thus are func-

tions of A; and h; as a result of (12a) and (12b). For the

last part, i.e., the integration along 0< z’< 1, the field in

(5b) is substituted into (15a). To avoid double differentia-

tion with respect to the local second-order bases NZ, the

source term in (15b) need special treatment. From the

Helmholtz equation, one has

d 2EY 8 ‘Ey
—=–k;Ey– —
ax” ~z!’ “

(17)

By using (17) and integration by parts, the integral (15b) in

O G z’ G 1, denoted by q.LoH=3, becomes

WOHZ3(LZ)

a2——– j~ldz’G(x– Xo, Z – z’)j-p~y(xo, Z’)
o

= jk:~ldz’G(x– XO, Z – Z’)~y(Xo, z’)
o

a I

+jG(x– xo,z–z’)-j-/Ey(xo, Z’)
Z,=O

8 a

– j~[dz’ ~ G(X– XO, Z–Z’)WEY(XO, Z’).

(18)

Note that we have reduced the order of differentiation to

just one.

From the preceding derivation, it is concluded that the

fields in region III, (15a) and (15b), are now functions of

A;, Irf, and the nodal values $, of the elements adjacent

1.5 2.0 2.5

i,/t,

Fig. 3. Normalized transmitted power \Tl:~ and radiation loss P,ad \P,nC

of step discontinuity. k. tl= 0.55, ~1 = 1.fI, nz = nl(l + An). — present
analysis (M= 7); . ~. Hosono et al. [9].

to r3:

[ 1

apo~=(r~~ ) = ~ ~H~A; + zH~h~ + ~H,@, (19b)
a P 9 i

where the E‘s and H‘s are known functions of X. and z.

VI. NUMERICAL I?IESULTS

By using the Ritz-@lerkin ap preach [19], the varia-

tional equation (1) is solved by the finite element method

and the frontal solution technique [20], using the exterior

fields (11), (13), (19a), and (19b). ,4fter the assembly and

elimination processes of the frontal solution technique, we

finally get a matrix equation of the form

:.@=j (20)

where A– is a known matrix, while @ and ~ are vectors

associated with the unknown coef Eicients and the source

terms due to the incident fields, respectively. Specifically

T = [% h;, h~l~> where ~, are the nod~ values along the
boundaries rl, r2, and those of the elements adjacent to

r~. After the unknowns h;’s are solved, (12a) and (12b)

can then be used to obtain the scattering coefficients of the

waveguide modes.

For an accuracy check, two well-known examples are

again studied and compared with those solved by other

methods. Here the reflection coefficient R and the trans-

mission coefficient T are, respectively, equal to al and afI

of (6a) with Afl equal to O, and the normalized radiated

– 1 – IR]2 – ]Tl 2. Fig. 3 shows the normal-power Pra~/Pi*~ –

ized transmitted power ( = IT 12, and radiated power of a

step discontinuity, with the ratio 1~/tz of the waveguide

widths a variable and the normalized difference An of the

refractive indices a parameter. Our results show excellent

agreement with those of Hosono et al. [9]. Fig. 4 also

shows good agreement between the present results and

those of Chung and Chen [17] for the discontinuity shown
in the figure. The length .of the discontinuity is fixed, while

its height h is changed. The special case h/D = – 1 corre-

sponds to one of an air gap.
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Fig. 4. Reflection and transmission coefficients of rectangulu disconti-

nuity. KOD = 1, n = 2.236. — present analysis (MX X M, = 8 X 5,
Xo/D = 6, M= 7); . . . Chung and Chen [17].
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Fig. 5. ReflectIon coefficients, transmission coefficients, and radiation

losses of feed structure. n = 2.236, M= 7.

In Fig. 5 we consider a possible feed structure which has

a discontinuity governed by the half angle of the tip 6.

Shown here are the reflection coefficient [R 1,the transmis-
sion coefficient IT 1, and the normalized radiated power

‘rad /pin. as a function Of the normalized frequencY kOD.
For 6 = 90°, the feed end is a step one, and for (3 greater

or smaller than 90°, the end is concave or convex, respec-

tively. When 8 = 26.6°, the tip of the feed end just touches

the right waveguide. The three sets of curves are indepen-

dent of O when koD approaches O, due to the smallness of

the discontinuity region. When koD >1, the radiation

losses for the concave case (0= 135°) are relatively large

compared with those of other cases. It is seen that al-

though the radiation losses for O = 26.6° and 450 are

nearly the same for all koD, the former has higher trans-

1,,

P 0.1

0.8 ‘a--- ‘---- +ITI

—A A

[0.4 ‘--- B

W
=<IRzl

0.2 ~%‘“ ..-
s IRll -

u ---- --
I .

01234
L/D

Fig. 6. Reflection and transmission coefficients of two ten-to-one trans-
formers. koD = 1,n = 2.236, MX = 14, M= 7, Xo/D = 6,

mission as well as lower reflection coefficients, which

means that a better feed condition can be reached.

The characteristics of two ten-to-one transformers, one

with abrupt steps (structure A) and the other with a linear

taper (structure B), are compared in Fig. 6. For the given

values of the parameters, both left and right waveguides

are monomode. For structure A, the width of the midsec-

tion is chosen so that the impedance-matching conditions

are satisfied. The fields scattered by the step junctions

(structure A) interfere with each other; thus two dips in

the curves of the reflection coefficients are observed. With-

out strong reflection in structure B, the corresponding

curves for the tapered structure behave more smoothly

than those in the step one. The CPU time is quite different

when the normalized length L/D of the taper is changed.

For example, about 2 minutes are required for calculating

the scattering coefficients of structure A for L/D = O, with

the division M, x M== 14 X 2 (Fig. 2(a)), while 5 minutes

are required for L/D = 2 ( MX X M, =14X7), both with a

DEC VAX 11/780.

To discuss’ the frequency response of the ten-to-one

transformers, we study the adjustable tapered transformer

structure shown in the insert of Fig. 7. The length of the

transformer is constant ( = 1.1 D) with respect to the

widths of the waveguides. When the tilt angle /3 equals 0°,

the width of the midsection is 0.33 D, like that of structure

A (Fig. 6). When 0 is different from 0°, the structure is so

determined that the two step ratios, namely th ratio of the
waveguide widths immediately adj scent to the junction,

are approximately the same. Specifically the structure with

6 = 39.3° corresponds to structure B of Fig. 6, where the

step ratios are equal to 1. It is noticed that the length of

the midsection is chosen to correspond to the first dip of

11111in Fig. 6 (where koD = 1). The subscript 1 (2) in R

and Prad denotes the ones with wave incident from wave-

guide I (II). By reciprocity, TI,= Tz = T. From the reflec-

tion curves, it is seen that the bandwidth of 00 = – 20 is

nearly equal to that of 8 = 0°, but with the minimum

shifting toward the lower frequency. Here the bandwidth

means the width of the normalized frequency for a given
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Fig. 7. (a) Reflection and transmission coefficients. (b) ~ormalized

radiation losses of a ten-to-one adjustable tapered transformer. n =

2.236, M= 7.

VII. CONCLUSIONS

Based on the partial variational principle and the finite

element method, we have proposed a method for analyzing

the slab discontinuity problems that do not fall into the

abrupt step category. Two types of exterior fields have

been linked to represent the whole exterior fields. By

comparing the numerical results for step discontinuities

with those from other methods, we have checked the

accuracy of the present approach. In this investigation,

several components having tapered structures have been

examined. In general, the tapered structure may reduce the

radiation loss and/or increase the bandwidth of the com-

ponents. With this method, more complicated discontinu-

ityy problems with TE- or TM-mode incidence can also be

solved.

APPENDIX

FIELD REPRESENTATION IN (15A) AND (15B)

Let G be the two-dimensional Green’s function in free

space and @ the scalar wave function (r)= EY or t.+.@z)

such that

V:G+k:G =–8(x--x’, z–z’) (Al)

and

where Vtz denotes the two-dimensional Laplacian opera-

tor. Multiplying (Al) by @ and (A.2) by G, subtracting the

result of the former from that of the latter, and then

integrating over the half space x > Xo, — co < x < m, one

obtains

+(X’, z’) = J dxdz (Gv:@ – I#Iv;G)
X>xo

——-H“ dz G:; –q5;
)

. (A3)
—w X=x.

Here the two-dimensional Green’s theorem and the radia-

tion condition have been used.

Choose G as

G(x> Z; X’, Z’) = – ;[Hj2J(kOr)+ HJ2J(kOrJ] (A4)

where HJ2) is the zero-order Hankel function of the second

kind, and

/6“= (X’–,++(Z’-.Z)2

/rl= (2 X0–x’–x)2+(z’–z)2. (A5)

level of reflection coefficient. As O increases, the band- This choice makes ~ 1.. ~. vanish; therefore (A3) be-
width broadens and the minimum becomes larger and

shifts toward the higher frequency. Note that as koD <1, comes

the radiation losses increase as koD decreases, which means a~
that the radiation 10SS at the minimum of @= – 20° is @(X, Z) = –~~ dz’G(x– Xo,, z–z’)— (A6)

larger than that of 6 = 0°, although their reflection minima
—cc ax’ ~(= -&

are approximately the same. where G(x – Xo, z – z’) is definecl by (16).
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