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A Partial Variational Approach for Arbitrary
Discontinuities in Planar Dielectric
Waveguides

SHYH-JONG CHUNG axp CHUN HSIUNG CHEN

Abstract — A novel approach for analyzing arbitrary discontinuities in
planar dielectric waveguides is proposed that uses the finite-element method
along with the frontal solution technique. Based on the partial variational
principle (PVP), the fields interior and exterior to the discontinuity finite
element region can be treated independently and eventually can be cou-
pled. The interior fields are expanded by the finite element nodal values
and the corresponding local bases, while the exterior ones are handled by
an approach combining modal expansion and Green’s function. In numeri-
cal computation, the continuous spectra of the waveguide modes are
discretized by the Laguerre expansion method.

To check the correciness of the present analysis, two numerical results
are compared with those of other methods. The scattering characteristics
of several linearly tapered discontinuities, such as transformers and feed
structures, are analyzed and compared with those having step junctions.

I. INTRODUCTION

LANAR dielectric waveguides are important in mil-

limeter-wave, submillimeter-wave, and optical systems.
Discontinuities are often introduced to create such compo-
nents as transformers, grating couplers, and feed struc-
tures. They also occur as a consequence of the misalign-
ment in component interconnections. Thus, many authors
have paid attention to the discontinuity problems associ-
ated with planar dielectric waveguides [1]-[17].

Analysis of associated discontinuity problems is difficult
owing to the excitation of guided modes and radiation
modes which have a continuous spectrum. Several tech-
niques have been proposed to deal with the continuous
spectrum in actual numerical computation [3]-[13].
Mahmoud and Beal [5] used the normalized Laguerre
polynomials to expand the continuous spectrum, and then
applied the mode-matching method to solve a step discon-
tinuity problem. Rozzi [6] instead applied the same poly-
nomials to express the tangential fields at the junction of a
step discontinuity and proposed the Ritz—Galerkin varia-
tional approach for solution.

These methods are effective only if the discontinuities
are of the abrupt step type. But the analysis of arbitrary
discontinuities is also necessary from practical consid-
erations. For small, smoothly varying discontinuities,
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Marcuse [14] solved a tapered dielectric slab waveguide by
regarding the structure as a succession of an infinite num-
ber of infinitesimal steps. Miyanaga and Asakura [15] used
the perturbation theory to study a linearly tapered grating
coupler.

For arbitrarily varying discontinuities, the finite element
approach has been adopted to expand the field distribu-
tion in the discontinuity region [16], [17]. In this approach,
treatment of the fields exterior to the finite element (dis-
continuity) region poses a considerable challenge. Suzuki
and Koshiba [16] put a semi-infinite electric conductor far
above the discontinuities and used the Green’s functions of
the waveguides to obtain a representation of the boundary
fields. Recently, Chung and Chen [17] treated the problem
of arbitrary irregularities in an otherwise uniform slab
waveguide by using the Green’s function of the waveguide
to express the exterior fields in terms of the fields in the
irregularity region. However, this approach seems useless
when the two slab guides connected to the discontinuity
are different, because of the difficulty in finding the Green’s
function.

In this investigation, the problem with completely arbi-
trary discontinuities in different dielectric slab waveguides
will be attacked. The fields interior and exterior to the
discontinuity finite element region will be properly han-
dled and coupled based on the partial variational principle
(PVP) [18] and the finite element method. Several linearly
tapered discontinuities will then be investigated in detail
with numerical results to show the scattering characteris-
tics of the structures.

II. FORMULATION OF THE PROBLEM

Consider the planar dielectric waveguide structure with
discontinuity shown in Fig. 1(a), which is uniform in the y
direction and symmetric with respect to the y-z plane.
Suppose that symmetric guided TE modes with y-polarized
eleciric fields are incident from z=—oco and z= + co.
Basically, we may consider the reduced structure shown in
Fig. 1(b), where a discontinuity region @ with refractive
index n(x,z) is enclosed by three artificial boundaries
[}, I5,, T, and a magnetic wall T, which is introduced due
to symmetry. Placed in region I (0 < x<o0,z<0) and
region I (0<x<o00,z>/) are planar dielectric wave-
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(2) Original structure with arbitrary discontinuity in planar
dielectric waveguide. (b) Reduced structure for solution,

Fig. 1.

guides I and II, respectively, whose refractive indices are
n; and n,. Region III is free space, which is above the
artificial boundary x = X,,. Note the overlapping of regions
I and III as well as II and III.

From the partial variational principle, a variational
equation is obtained [18], [17]:

841=0

1=

j JEf JE, JES JE, L
wp.o-/;zdv[ dx 0dx * 9z 9z ~ ki EyE}{
+fdsﬁ-[z‘H;’(1“+)—)€H;’(I‘+)]

T
[E,(T7)-E(T")]

—frdsE;(r—)ﬁ-[;eHz(r+)-2Hx(r+)] (1)
where I'=T,+T,+1I; and # is its outward normal. I'”
and I'* represent the inner and outer sides of I, respec-
tively. As usual, k2 =w’pg, and n’(x,z)=e(x, z)/¢,
where e(x z) is the permittivity of the discontinuity region
Q. (E,, H,, H,) are the undetermined trial ficlds, while
(Ey, H. H 4) are test fields, which may be regarded as a
set of we1ght1ng functions.

In applying (1), two points must be mentioned. The
partial variational operator 8 must operate only on the
test fields with superscript a. The trial fields exterior to
boundary I' must obey the source-free and radiation con-
ditions.

The fields in (1) may be classified into two groups: those
interior and those exterior to the boundary I'. Since the
variational equation (1) actually contains the natural conti-
nuity boundary condition [18], these two groups of fields
can first be treated independently and then be coupled in
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Fig. 2. (a) Typical mesh division for linearly tapered discontinuity in
planar dielectric waveguide (M, X M. = 6X9). (b) Second-order trian-
gular element.

the process of solving the variational equation (1). The
interior fields are tackled by the finite element method,
which will be described in the next section. The exterior
fields are further divided into two linked types: those in
the waveguides and those in free space, which will be
depicted in Sections IV and V.

III. FIELDS IN THE DISCONTINUITY REGION

The fields in the discontinuity region € are handled by
the finite element method [19], [20]. To this end, the
discontinuity region is divided into several elements, each
with triangular shape, as shown in Fig. 2(a). For each
element e, six nodes are specified (Fig. 2(b)) and the field
E} in that element is expanded by the nodal values ¢ and
their corresponding shape functions N,:

Eg(x,2) = i 9N, (2)
where -
N, =1,(21,-1) N,=1,(21,-1)
N, =15(21,-1) N, =4ll, (3)
Ns= 4,1, Ny =411

and [, 1,,1, are the area coordinates [19]. The relation
between the area coordinates and the Cartesian coordi-
nates is given by

z oz, 3 || L
x|=|x; x, x;3||1 (4)
1 1 1 114

where (x,, z;) are the Cartesian coordinates of the vertex j

(j=1,2,3) of the triangle.
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The fields in the whole discontinuity region are just the
sum of those in each element:

6
E,(2) =1 L oN, (5a)
35 E/(Q)= Eejlilq T g=x,z. (5b)

IV. FIELDS IN WAVEGUIDE REGIONS

The fields in waveguides I and II are expressed as the
combination of the waveguide modes:

Na
v [A;e FiBGee) 4 g iij“(Z—za)] u%(x)
p=1

+/ dpdi——

Ex(x,z) =

a(x)e+jﬁp(z 24)

B (6a)

wMOHQ‘(x,z)

N,
5 5 g

Bz~ z»] "‘(x)

_wuo_/(;wdpd;‘ ug(x)eijﬁp(z—za) (6b)
where a=1 or II. When a=1, the upper signs are used;
otherwise the lower ones are used. 4, and a, are the
coefficients of the incident (known) and scattered (un-
known) pth guided modes, whose modal function and
propagation constant are u,(x) and B,. The quantities
u,(x) and d, are the modal function and the coefficient of
the radiation mode, with p and B8,=yk;—p* being the
wavenumbers (continuous spectrum) in the x and z direc-
tions, respectively. N, is the total number of guided modes
in region «; and z,=0 or /, when « =1 or I, respectively.

The scattering coefficients can be represented as a func-
tion of the magnetic fields at z = z,. Multiplying (6b) in
turn by u; and ug, integrating over x at z=z,, and using
mode orthogonality property, one obtains

a —A"‘+—f dxu"(x)prH"(x o)

rE g (72)

ds —+—-f dxul(x)wmoHi(%,2,). (70)

Introduce a complete set in 0 < x < oo [6]:

1
,?q(x)=—‘/§;—exp(—-x/2S0)Lq*1(Sio), g=1,2,---
(8)

where L denotes the Laguerre polynomial. Deciding on
the scale factor S, is quite complicated. Roughly speaking,
it is chosen such that (9a) can essentially be satisfied for a
given M [6]. (Actually, there exists a large range of 5,
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which may satisfy the above requirement.) Besides, the
sequence of (8) should be independent in 0 < x < X, and
should be able to represent the field behavior in 0 < x < X,
To be independent, S, may be chosen as small as possible.
But when S, is too small, the Laguerre polynomials will
vary quickly near x =0 and will be almost zero about
x = X,, which makes it difficult for the sequence of (8) to
express the actual field behavior in the vicinity of x = X,,.
In terms of these normalized Laguerre polynomials, the
modal functions of the waveguides can be expressed as

(x)= Z Qg Zy(x) (%2)

up(x) = Z Ly (x) (9b)

where
=f0°°dxu;(x)$q(x) (10a)
=f0°0dxu,’;‘(x)$q(x) (10b)

and M is a finite number in actual numerical computa-
tion.

Now let us expand the magnetic fields wu,H, as a sum
of the incident fields and the combination of the normal-
ized Laguerre polynomials:

wlu‘OHx(r:) = (*’H'OH;:(X7 Za)

Z BrAsus(x)+ ;lh‘j‘].,?q(x) (11)

where the 4 ,’s are to be determined.
With (11), (9a), and (9b), the scattering coefficients of
(7a) and (7b) may be rewritten as

ag=+ qg he ( %jq) (12a)
P [ YR
g=1 w:U‘O

Substituting (12a), (12b), (9a), and (9b) into (6a), one gets
E(TS) = E)(x, 2,)

N, M M
= ¥ Aus(x)+ LA Zzg,f,(x)] (13)
p=1 g=1 t=1
where
N, 1
a LY Pq pt
Zi= ¥ g0 [0~ (14)
P P

Equations (11) and (13) then give the tangential fields over
the boundaries I} and T,
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V. FIELDS IN FREE SPACE

The fields above the boundary x = X, may be repre-
sented by those over the boundary, using the Green’s
function in free space (see the Appendix):

E,(x,2) =~ f dz'G(x — Xo,z—z) E (Xo,z)

(x,z) elll (15a)
wP‘OHz('x’ Z)

= —f_oo dz'G(x —

z)

0

82
Z)a 2 y(Xoyz)

(x,z) €Il (15b)

where the Green’s function G takes the form

G(x—x' z—z)——— (2)(k0\/7x x’ +(z—z))
(16)

The integrations in (15a) and (15b) can be divided into
three parts, thatis, —00<z'<0, /< z' <0, and 0 <z’ <.
The fields in first two parts are calculated by partially
differentiating (6a) with respect to x, and thus are func-
tions of 45 and hy as a result of (12a) and (12b). For the
last part, i.e., the integration along 0 < z' </, the field in
(5b) is substituted into (15a). To avoid double differentia-
tion with respect to the local second-order bases N,, the
source term in (15b) need special treatment. From the
Helmbholtz equation, one has

[e0]
= —jf dz’G(x— Xy, z
—ob

dE J’E
ax/;=_k§ y 8212})’ (17)

By using (17) and integration by parts, the integral (15b) in
0 <z’ </, denoted by wp,H,;, becomes

wnuOHZS(x’ Z)
2

o, d
=_]f0de(x—X0,z )a ~E,(X,,2')

= jk%L]dz’G(x - Xp, 2~ 2")E (X, 2')

)

a
+JjG(x — Xo,z—z) E(Xo,z)

/=0
d
)E?Ey(XO’ z').
(18)

Note that we have reduced the order of differentiation to
just one.

From the preceding derivation, it is concluded that the
fields in region III, (15a) and (15b), are now functions of
A, hy, and the nodal values ¢, of the elements adjacent
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Fig. 3. Normalized transmitted power {T'|* and radiation loss P,.q /P,

of step discontinuity. kq# = 0.55, n; =1.6, n, = ny(1+ An). — present
analysis (M =7); --- - Hosono et al. [9].

to Iy

E(Iy) =% [ZE;A; + 2 EMhe |+ ZE o, (19a)

w,LLOHZ(I‘3+)=Z[ZH;,"A;+EH"‘hq + SHg, (190)
alp

where the E’s and H'’s are known functions of X, and z.

VI. NUMERICAL RESULTS

By using the Ritz—Galerkin approach [19], the varia-
tional equation (1) is solved by the finite element method
and the frontal solution technique [20], using the exterior
fields (11), (13), (19a), and (19b). After the assembly and
elimination processes of the frontal solution technique, we
finally get a matrix equation of the form

B A-p=5 (20)
where 4 is a known matrix, while ¢ and § are vectors
associated with the unknown coefficients and the source
terms due to the incident fields, respectively. Specifically
¢ =19, hi, hy]7, where ¢, are the nodal values along the
boundarles I‘l, I’,, and those of the elements adjacent to
[;. After the unknowns h’s are solved, (12a) and (12b)
can then be used to obtain the scattering coefficients of the
waveguide modes.

For an accuracy check, two well-known examples are
again studied and compared with those solved by other
methods. Here the reflection coefficient R and the trans-
mission coefficient T are, respectively, equal to af and af
of (6a) with A4 equal to 0, and the normalized radlated
power P, /Pmc —|R>— |T |2. Fig. 3 shows the normal-
ized transmitted power (=|T|?) and radiated power of a
step discontinuity, with the ratio 1, /¢, of the waveguide
widths a variable and the normalized difference An of the
refractive indices a parameter. Our results show excellent
agreement with those of Hosono er al. [9]. Fig. 4 also
shows good agreement between the present results and
those of Chung and Chen [17] for the discontinuity shown
in the figure. The length of the discontinuity is fixed, while
its height 4 is changed. The special case # /D = —1 corre-
sponds to one of an air gap.
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Fig. 4. Reflection and transmission coefficients of rectangular disconti-
nuity. KyD=1, n=2236. — present analysis (M, X M,=8X5,
Xo/D=6, M=7); --- - Chung and Chen [17].
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Reflection coefficients, transmission coefficients, and radiation
losses of feed structure. n =2.236, M =17.

Fig. 5.

In Fig. 5 we consider a possible feed structure which has
a discontinuity governed by the half angle of the tip 4.
Shown here are the reflection coefficient |R|, the transmis-
sion coefficient |T|, and the normalized radiated power
P_q/P;,. as a function of the normalized frequency k,D.
For 8§ =90°, the feed end is a step one, and for # greater
or smaller than 90°, the end is concave or convex, respec-
tively. When 8 = 26.6°, the tip of the feed end just touches
the right waveguide. The three sets of curves are indepen-
dent of § when k,D approaches 0, due to the smallness of
the discontinuity region. When k,D >1, the radiation
losses for the concave case (6 =135°) are relatively large
compared with those of other cases. It is seen that al-
though the radiation losses for € =26.6° and 45° are
nearly the same for all kD, the former has higher trans-
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Fig. 6. Reflection and transmission coefficients of two ten-to-one trans-
formers. koD =1, n=2236, M, =14, M=17, X, /D =6.

mission as well as lower reflection coefficients, which
means that a better feed condition can be reached.

The characteristics of two ten-to-one transformers, one
with abrupt steps (structure A) and the other with a linear
taper (structure B), are compared in Fig. 6. For the given
values of the parameters, both left and right waveguides
are monomode. For structure A, the width of the midsec-
tion is chosen so that the impedance-matching conditions
are satisfied. The fields scattered by the step junctions
(structure A) interfere with each other; thus two dips in
the curves of the reflection coefficients are observed. With-
out strong reflection in structure B, the corresponding
curves for the tapered structure behave more smoothly
than those in the step one. The CPU time is quite different
when the normalized length L /D of the taper is changed.
For example, about 2 minutes are required for calculating
the scattering coefficients of structure A for L /D = 0, with
the division M, X M, =14X2 (Fig. 2(a)), while 5 minutes
are required for L /D=2 (M X M,=14X7), both with a
DEC VAX 11 /780.

To discuss the frequency response of the ten-to-one
transformers, we study the adjustable tapered transformer
structure shown in the insert of Fig. 7. The length of the
transformer is constant (=1.1 D) with respect to the
widths of the waveguides. When the tilt angle 8 equals 0°,
the width of the midsection is 0.33 D, like that of structure
A (Fig. 6). When # is different from 0°, the structure is so
determined that the two step ratios, namely th ratio of the
waveguide widths immediately adjacent to the junction,
are approximately the same. Specifically the structure with
6 = 39.3° corresponds to structure B of Fig. 6, where the
step ratios are equal to 1. It is noticed that the length of
the midsection is chosen to correspond to the first dip of
|R;| in Fig. 6 (where k,D =1). The subscript 1 (2) in R
and P_, denotes the ones with wave incident from wave-
guide I (II). By reciprocity, 7, =7, =T. From the reflec-
tion curves, it is seen that the bandwidth of 6°= —20 is
nearly equal to that of 8 =0°, but with the minimum
shifting toward the lower frequency. Here the bandwidth
means the width of the normalized frequency for a given
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Fig. 7. (a) Reflection and transmission coefficients. (b) Normalized
radiation losses of a ten-to-one adjustable tapered transformer. n=
2236, M=1.

level of reflection coefficient. As 8 increases, the band-
width broadens and the minimum becomes larger and
shifts toward the higher frequency. Note that as kD <1,
the radiation losses increase as kD decreases, which means
that the radiation loss at the minimum of 6= —20° is
larger than that of § = 0°, although their reflection minima
are approximately the same.
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VIIL

Based on the partial variational principle and the finite
element method, we have proposed a method for analyzing
the slab discontinuity problems that do not fall into the
abrupt step category. Two types of exterior fields have
been linked to represent the whole exterior fields. By
comparing the numerical results for step discontinuities
with those from other methods, we have checked the
accuracy of the present approach. In this investigation,
several components having tapered structures have been
examined. In general, the tapered structure may reduce the
radiation loss and /or increase the bandwidth of the com-
ponents. With this method, more complicated discontinu-
ity problems with TE- or TM-mode incidence can also be
solved.

CONCLUSIONS

APPENDIX
FIELD REPRESENTATION IN (15A) AND (15B)

Let G be the two-dimensional Green’s function in free
space and ¢ the scalar wave function (¢ = E, or wpyH,)
such that ’

VIG+kIG=—8(x~-x",z—2') (A1)

and
Vi + k=0 (A2)

where v, denotes the two-dimensional Laplacian opera-
tor. Multiplying (Al) by ¢ and (A2) by G, subtracting the
result of the former from that of the latter, and then
integrating over the half space x > X, — 0 < x <00, one
obtains

o(x,2)= [

xz X

dxdz (G2 — ¢v,2G)

ood G8¢ G
_—f_w Z( 3xn¢8x)x

Here the two-dimensional Green’s theorem and the radia-
tion condition have been used.
Choose G as

(A3)

= X0

Glx, 2%, 2') = — —Ji[Héz)(kor) +HO (kory)] (Ad)

where H{? is the zero-order Hankel function of the second
kind, and

r =\/(x’—x)2+(z’—- 2)2

=2 X, —x'— x)*+(z'— z)*. (A5)

G
This choice makes T l-x vanish; therefore (A3) be-
X

-

comes

(A6)

x'= Xy

o ad
o(x,z)=— f.de/G(x - X,.z—2') a;ﬁ/

where G(x — X, z — z) is defined by (16).
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